

Requirements and Actions for Earth Radiation Budget Measurements

Requirements for radiation budget measurements

- TOA upwelling longwave irradiance
- TOA upwelling shortwave irradiance
- Surface upwelling longwave irradiance
- Surface upwelling shortwave irradiance
- Total solar irradiance
- Solar spectral irradiance

The requirements need to be reviewed

Requirements Latest GCOS definitions in GCOS-IP

	Variable	Period	H/V Resn	Accuracy	Stability	Source
Earth Radiat Budget	ion Top-of-atmosphere ERB longwave	Monthly(resolving diurnal cycle)	100km/NA	Requirements on global mean: 1W/m2	0.2 W/m2/decade	NOAA Tech Rep. NESDIS 134
	Top-of-atmosphere ERB shortwave (reflected)	Monthly(resolving diurnal cycle)	100km/NA	Requirements on global mean: 1.0 W/m2	0.3W/m2 /decade	NOAA Tech Rep. NESDIS 134
	Surface ERB longwave	Monthly(resolving diurnal cycle)	100km/NA	Requirements on global mean: 1W/m2	0.2W/m2 /decade	
	Surface ERB shortwave	Monthly(resolving diurnal cycle)	100km/NA	Requirements on global mean: 1W/m2	0.2W/m2 /decade	
	Total solar irradiance	Daily	NA/NA	0.035%	0.01%/decade	
	Solar spectral irradiance	Daily	Spectral resolution: 1 nm < 290 nm 2nm 290-1000 nm 5 nm 1000-1600 nm	0.3%(200-2400nm)	1%(200- 2400nm)/decade	

Do we agree with these requirements?
What suggestions do we have regarding the number/orbital characteristics of satellites/instruments that might deliver this?

Note, no clarity on what the underlying priority science questions are!

CARBON

One (ultimate) goal is to observationally close carbon, water and energy cycles

Target 3: Close global energy budget to within 0.1 W m⁻².

Requirements

WMO OSCAR definitions for various applications

Requirements defined for *Upward long-wave irradiance at TOA* (5)

This tables shows all related requirements. For more operations/filtering, please consult the full list of Requirements Note: In reading the values, goal is marked blue, breakthrough great and threshold orange

ld 🔺	Variable	♦ Layer ♦	App Area 💠	Uncertainty	Stability / decade	Hor Res	Ver Res	Obs Cyc	Timeliness	Coverage 0	Conf Level \$	Val Date ≎	Source 0
117	Upward long-wave irradiance at TOA	TOA	Climate- AOPC	5 W/m ² 6.5 W/m ² 10 W/m ²		100 km 200 km 500 km		3 h 4 h 6 h	3 h 6 h 24 h	Global	firm	2007-07-19	AOPC
307	Upward long-wave irradiance at TOA	TOA	Global NWP	5 W/m ² 10 W/m ² 20 W/m ²		10 km 30 km 100 km		60 min 3 h 12 h	24 h 5 d 30 d	Global	firm	2009-02-10	John Eyre
382	Upward long-wave irradiance at TOA	TOA	High Res NWP	5 W/m ² 10 W/m ² 20 W/m ²		2 km 10 km 50 km		30 min 60 min 6 h	60 min 3 h 12 h	Global	firm	2011-08-04	T Montmerie
<u>409</u>	Upward long-wave irradiance at TOA	TOA		5 W/m ² 8 W/m ² 20 W/m ²		10 km 21.5 km 100 km		60 min 2 h 12 h	24 h 46 h 7 d	Global	reasonable	2003-10-20	ET ODRRGOS
633	Upward long-wave irradiance at TOA	TOA	SPARC	5 W/m ² 7 W/m ² 10 W/m ²		50 km 100 km 250 km		3 h 4 h 6 h	30 d 45 d 90 d	Global	reasonable	1998-10-29	WCRP

Acronyms:

AOPC: Atmospheric Observations Panel for Climate

SPARC: Stratospheric Processes and their role in climate

ET CORRGOS: Expert Team for Observational Data Requirements and

Redesign of the Global Observing System

Requirements WMO OSCAR definitions for various applications

Requirements defined for *Upward short-wave irradiance at TOA* (5)

This tables shows all related requirements. For more operations/filtering, please consult the full list of Requirements

Note: In reading the values, goal is marked blue, breakthrough green and threshold orange.

ld -	Variable	○ Layer ○	App Area ≎	Uncertainty	Stability / decade	Hor Res	Ver Res	Obs Cyc	Timeliness	Coverage 0	Conf Level	Val Date	Source 0
<u>116</u>	Upward short-wave irradiance at TOA	TOA	Climate- AOPC	5 W/m ² 6.5 W/m ² 10 W/m ²		100 km 200 km 500 km		3 h 4 h 6 h	3 h 6 h 24 h	Global	firm	2007-07-19	AOPC
305	Upward short-wave irradiance at TOA	TOA	Global NWP	5 W/m ² 10 W/m ² 20 W/m ²		10 km 30 km 100 km		60 min 3 h 12 h	24 h 5 d 30 d	Global	firm	2009-02-10	John Eyre
381	Upward short-wave irradiance at TOA	TOA	High Res NWP	5 W/m ² 10 W/m ² 20 W/m ²		2 km 10 km 50 km		30 min 60 min 6 h	60 min 3 h 12 h	Global	firm	2011-08-04	T Montmerie
408	Upward short-wave irradiance at TOA	TOA	Hydrology	5 W/m ² 8 W/m ² 20 W/m ²		0.1 km 1.26 km 200 km		60 min 108 min 6 h	24 h 46 h 7 d	Global	reasonable	2003-10-20	ET ODRRGOS
632	Upward short-wave irradiance at TOA	TOA	SPARC	5 W/m ² 7 W/m ² 10 W/m ²		50 km 100 km 250 km		3 h 4 h 6 h	30 d 45 d 90 d	Global	reasonable	1998-10-29	WCRP

GCOS Actions for radiation budget measurements

- Improve surface reporting
- Add sunshine reports
- BSRN enhancements
- Satellite continuity
- Start profile measurements

They will be reviewed annually

Surface radiation New actions

Action	National sunshine records should be incorporated into International Data Centres.				
Benefit	Better description of surface radiation fields.				
Who	National Meteorological Services.				
Time-frame	Implement in next 2 years.				
Performance	Sunshine record archive established in International data centres in analysis				
Indicator	centres by 2018.				
Annual Cost	1-10M US\$				

GCOS Actions: Surface radiation

Action	Ensure continued long-term operation of the BSRN and expand the network to obtain globally more representative coverage and improve communications between station operators and the archive centre.							
Benefit	Continuing baseline surface radiation climate record at BSRN sites.							
Who	Parties' national services and research programmes operating BSRN sites in cooperation with AOPC and the WCRP GEWEX Radiation Panel.							
Time-frame	Ongoing.							
Performance	The number of BSRN stations regularly submitting valid data to International Data							
Indicator	Centres. Running, planned, and closed BSRN Stations, I							

Running
 Inactive
 ▲ Closed
 Candidate

Concern over poor coverage. 12 stations no data since 2012.

100k - 1M US\$

Annual Cost

GCOS Actions: Surface radiation

Action	Submit surface radiation data with quality indicators from national networks to the World Radiation Data Centre (WRDC). Expand deployment of surface radiation measurements over ocean.
Benefit	Expand central archive. Data crucial to constrain global radiation budgets and for satellite product validation. More data over ocean would fill an existing gap.
Who	National Meteorological Services and others, in collaboration with the WRDC.
Time-frame	Ongoing.
Performance Indicator	Data availability in WRDC.
Annual Cost	1-10M US\$

GCOS Actions: Earth Radn Budget Vertical Profile Measurements

Action	To understand the vertical profile of radiation requires development and deployment of technologies to measure in-situ profiles.
Benefit	Understanding of 3D radiation field, model validation, better understanding of radiosondes.
Who	NMSs, NMIs, HMEI.
Time-frame	Ongoing.
Performance Indicator	Data availability in NMS archives
Annual Cost	1-10M US\$

Earth Radiation Budget

Action	Ensure sustained incident total and spectral solar irradiances and Earth Radiation Budget observations, with at least one dedicated satellite instrument operating at any one time.						
Benefit	Seasonal forecasting, reanalyses, model validation.						
Who	Space agencies.						
Time-frame	Ongoing.						
Performance Indicator	Long-term data availability at archives.						
Annual Cost	30-100M US\$						

There are potential gaps in satellite record and measurements of spectral solar irradiance required for seasonal forecasts is not assured.

